If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+20x+4=0
a = 12; b = 20; c = +4;
Δ = b2-4ac
Δ = 202-4·12·4
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{13}}{2*12}=\frac{-20-4\sqrt{13}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{13}}{2*12}=\frac{-20+4\sqrt{13}}{24} $
| -2/3x-1/2=3/5 | | p+53=15 | | 13=-8w+5(w+2) | | 3+1/7x=x | | 2/3x=11/5 | | x3+19=32 | | 13=-8w | | 18x^2+20x+16=0 | | -3+12=2-3q | | X+9=r9 | | 3(x+8)+8x=11 | | -28=-3+5x | | 6(u+2)=9u-9 | | 36=3u-15 | | 68x+32=180 | | 2x+11=10x+39 | | 99x+22=180 | | x/5-11=33 | | 7x-37=-5(x-7) | | x/11-11=33 | | 7a-10=3a+2 | | 8x2-7=0 | | 11+9v=4+10v | | 4n+15=180 | | 100x+14=180 | | x/3+18=39 | | 2(3c-1)-2=4c+4 | | 3u2+2u−6=0 | | x^2-8x+14=x- | | 105x+31=180 | | a^-2=9 | | 21x^2+32x+7=0 |